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Abstract. In this paper we review the approach to algebra-valued
models and we introduce an infinite class of natural models for paracon-
sistent set theory. We then present several paraconsistent set theories
based on Logics of Formal Inconsistency (LFI), known in the litera-
ture as LFI-set theories, and we show that there is no natural model
that validates these systems. We therefore suggest to abandon these
theories.

1. Introduction

There are two possible approaches to paraconsistent set theory. The first
one, that we may call Cantorian, stems from the recognition that the trou-
bles caused by the foundational paradoxes is not ascribable to the basic
principles of the theory but to the underlying logic. This approach calls
for a revision of the logic and proposes new logical tools to escape the triv-
iality that originates from set-theoretical antinomies. Generally, this kind
of approach aims at formalizing set theory by means of two simple princi-
ples: Extensionality and unrestricted Comprehension. Examples of these
theories can be found in [4], [14], and [15]. While the proponents of these
paraconsistent set theories consider their systems to be closer in spirit to
Cantor’s theory—and to the näıve idea that to every well-defined property
corresponds a set—however their justification suffer of the same weakness
that an intuitionist axiomatic system suffers with respect to Brower’s in-
tuitionism: how to consider appropriate the use of axioms and deductive
rules for regimenting theories that in the intentions of their creators tended
to escape formalization? In other words, how to conciliate the axiomatic
method and a näıve approach to Cantor’s theory of transfinite numbers?

In direct opposition to the Cantorian approach we may find what we
may called Zermelian paraconsistent set theories. These are the axiomatic
systems that, using an underlying paraconsistent logic, accept as a fun-
damental step in the development of set theory the axiomatization that
Zermelo proposed in the 1908 paper Investigations in the foundations of
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set theory I. From this perspective, classical ZFC captures only partially
the universe of set theory, while a paraconsistent approach is justified in
that it offers a broader view of a theory which includes consistent and
inconsistent totalities—to use a Cantorian phrasing. To put it more em-
phatically: there are more things in heaven and earth than are dreamt of in
ZFC. Consequently, a Zermelian approach proposes axiomatic systems as
close as possible to classical ZFC, but where the logical connective receive,
instead, a paraconsistent interpretation. Example of these theories may be
found in [9], [10], and [6]. Although both approaches have their pros and
cons, we consider the Zermelian approach closer to set-theoretical practice.

It is undeniable that, from 1908 on, the axiomatization of set theory
brought a clearer picture of the universe of all sets—after decades of works
and the efforts of mathematicians of the caliber of Zermelo, Fraenkel,
Skolem, Von Neumann, and Gödel—in terms of the cumulative structure
of V. Moreover, on the philosophical side, Boolos [3] argued for a deep
conceptual connection between a cumulative hierarchy structure, the it-
erative conception of set, and ZFC. For this reason, we believe that the
Zermelian approach should not only be restricted to a system of axioms,
but should also consider its semantic interpretation, in terms of a suit-
able cumulative hierarchy. This idea has been made concrete in [10], using
algebra-valued models ; i.e. a generalization of Boolean-valued models to
structures whose underlying algebra is not necessarily Boolean. In [10],
the authors introduced an algebra-valued model VpPS3,˚q, based on the
paraconsistent algebra pPS3, ˚q, first introduced in [11]. The approach of
[10] has been recently extended in [2] to produce an infinite class of models,
called linear, which include the model VpPS3,˚q as a special case.

In this paper we investigate wether linear models are suitable structures
for the set theories developed in [6]. The reason for asking this question is
twofold. First, the linear models are the only know models for paraconsis-
tent Zermelian set theories. Moreover, being the result of algebra-valued
constructions, linear models can be seen as natural models for the Zer-
melian approach, because of their cumulative hierarchy structure. Second,
and mostly, the algebra pPS3, ˚q is a Logic of Formal Inconsistency, as
shown in [8]. Therefore it is natural to interpret the axioms of these ax-
iomatic systems in a model like VpPS3,˚q, which is based on the same logical
background.

In the next pages we will show that the set theories developed in [6] are
not valid in any linear model. This will therefore motivate the rejection of
these theories. More precisely we will show that there is a deep conceptual
issue in the formulation of these axiomatic systems, since they fall short
of capturing inconsistent totalities. In short, these systems do not comply
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with the task for which they have been created; either they get a harmless
interpretation of paraconsistency (i.e. classical ZF), or they are just false
in the natural models of Zermelian paraconsistent set theories.

The article is structured as follows. In §2 we introduce the Boolean-
valued technique for constructing models of set theory. In §3 we introduce
the linear models for paraconsistent set theory. In §4 we introduce a family
of Zermelian paraconsistent set theories based on the language of LFIs—as
presented in [6]—and we show that linear models do not validate them.
We conclude offering reasons to abandon these set theories.

2. Boolean valued models

The Boolean-valued model technique represents an alternative, alge-
braic, presentation of the forcing method. Forcing was invented by Paul
Cohen [7] and is now considered the cornerstone of contemporary set the-
ory. It is a tool for producing relative consistency results, that has been
used to prove the independence of CH from the axioms of ZFC.

To recall the main ideas and to fix notation we briefly introduce the
Boolean-valued model construction of a model of set theory.1 Given a com-
plete Boolean algebra B, a Boolean-valued structure is defined by transfi-
nite recursion:

VB
α “ tx |x is a function and ranpxq Ď B and there is ζ ă α with

dompxq Ď VB
ζ u and

VB “ tx|Dαpx P VB
α qu.

Extending the language of set theory with constants for every element
of VB, we can define a new language LB, as common in model theory,
that allows one to talk about the Boolean valued structure VB, by means
of what are called B-sentences. We can therefore generalize the notion of
satisfaction. Indeed, it is possible to define a B-evaluation function that
assigns to every B-sentence σ, its Boolean truth value JσK P B.2 Hence,
whenever JϕK “ 1B (that is, the maximal element of the complete Boolean
algebra B), then we say that ϕ is valid in VB. The definition the B-
evaluation function not only resembles closely that of a truth definition,
but, similarly, it cannot be fully defined within ZFC, because, as in the

1For reasons of space, we do not define notions that are standard in the literature.
For a broader and more complete presentation, we defer the interested reader to [1].

2Remember that 0B and 1B , respectively the smallest and largest elements of a
Boolean algebra B, may be interpreted as falsehood and truth; hence, all other elements
of the algebra have the intuitive meaning of intermediate truth values.



4 S. JOCKWICH MARTINEZ AND G. VENTURI

case of the truth predicate, the collection of all ordered pairs pσ, JσKBq is
not a definable class in ZFC.3

The Boolean-valued structures so constructed are non-standard in a very
strong sense. Indeed, the interpretations of the basic notions of equality
and membership have an ad hoc non-standard character. Given a complete
Boolean algebra B and u, v P VB,

Ju P vK “
ł

yPdompvq

pvpyq ^ Ju “ yKq

and

Ju “ vK “
ľ

xPdompuq

pupxq ñ Jx P vKq ^
ľ

yPdompvq

pvpyq ñ Jy P uKq.

Notice that the above evaluations are inter-defined by a simultaneous
recursion and in terms of the algebraic structure of the Boolean algebra.
On the other hand, the other logical connective are interpreted in the
standard way.

JKKB “ 0B,

Jϕ^ ψKB “ JϕKB ^B JψKB,

Jϕ_ ψKB “ JϕKB _B JψKB,

JϕÑ ψKB “ JϕKB ñB JψKB,

JDxϕpxqKB “
Ž

uPV BJϕpuqK
B, and

J@xϕpxqKB “
Ź

uPV BJϕpuqK
B,

where on the left side of the equality are displayed logical connectives,
while on the right side the operations of the algebra B, and the negation
is defined in terms of implication and K.

The interest of this construction lays in the fact that, due to the proper-
ties of Boolean algebras, all axioms of ZFC are valid in VB, that is, if σ is
an axiom of ZFC, then JσKB “ 1B. On the other hand, if JσK ‰ 0B, we can
say that σ is consistent with ZFC. Moreover, the versatility of this method
consists in the possibility to obtain different consistency results just by
changing the underlying algebra and thus constructing different models.

3However, notice that, due to the definability in the ground model of the forcing
relation, we have that, fixing a formula ϕ, the collection tpτ, ϕpτq|τ P VBu is a class
definable in VB.
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3. Models for Zermelian set theories

Definition 3.1. We call a poset pA;ďq a meet semilattice if every two
elements x, y P A have an infimum, denoted by x^ y. If there also exists a
supremum, x _ y, for any two elements x, y P A, then pA;ďq is a lattice.
We say that pA;ďq is a bounded lattice if it is a lattice that has a greatest
element 1A and a least element 0A. A lattice pA;ďq is complete if the
supremum

Ž

X and the infimum
Ź

X exist for every X Ď A. A lattice is
called distributive if it satisfies the distributivity law, that is, x^py_ zq “
px^ yq _ px^ zq for all x, y, z in its universe.

In what follows, by an algebra we mean a complete bounded distributive
lattice. A first step in the construction of natural models for Zermelian
paraconsistent set theories has been undertaken in [10], modifying the un-
derlying algebra of a Boolean-valued model construction. The authors of
[10] individuated a specific class of algebra suited for this purpose: the
reasonable implicative algebras (ri-algebras henceforth). Following [10], an
algebra, in order to be a ri-algebra needs to have an operation ñ that
satisfies the following properties: .4

P1 px^ yq ď z implies x ď py ñ zq

P2 y ď z implies pxñ yq ď pxñ zq

P3 y ď z implies pz ñ xq ď py ñ xq

P4 ppx^ yq ñ zq “ pxñ py ñ zqq

But a further condition (or better a schema of conditions for every ϕ a
negation free fromula) is then required, in order validate all axioms of ZF.

J@xϕpxqKA “
ľ

xPdompuq

pupxq ñ JϕpxqKAq pBQϕq

Theorem 3.2. ([10]) Any ri-algebra A that satisfies BQϕ, for any nega-
tion free formula ϕ, is such that the model VA validates the negation free
fragment of ZF.

In [10] we find an example of an algebra, called PS3, for which the
hypotheses—and thus the conclusion—of Theorem 3.2 hold. Thus, VPS3

4A caveat for the reader: by an ri-algebra we mean what in [10] was called reasonable
deductive implication algebra. We slightly changed the terminology for notational and
expository convenience. We hope not to confuse the well-informed reader.
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validates all axioms of ZF, with the axiom schemata restricted to negation
free formulas.
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Figure 1. Connectives for PS3

The main result of [10] consisted in showing that it is also possible to
add a paraconsistent negation ˚, defined by 1˚ “ 0, 1

2

˚
“ 1

2
and 0˚ “ 1,

in such a way that VpPS3,˚q is a paraconsistent model of the negation free
fragment of ZF (which will be abbraviated as NFF-ZF). More recently,
in [2], this approach has been extended to show that VpPS3,˚q is only one
element of a uniformly defined class of models for paraconsistent NFF-ZF.

Definition 3.3. By V we indicate the class of linear algebras of the form
L “ pL,^,_, , D, 0, 1q, where  x “ maxty : x ^ y “ 0u exists for every
x P L as well as Dx “ minty P L : x_ y “ 1u exists for every x P L, such
that the base set is order-isomorphic to an ordinal. By an V-algebra we
mean a member of V.

Theorem 3.4. ([2]) Given an V-algebra L, it is possible to define an
implication that not only makes it an ri-algebras, but that also satisfies
BQϕ, for any negation free formula ϕ. Moreover, it is possible to define a
paraconsistent negation in such a way that VL is a model of paraconsistent
ZF.

We refer to an V-algebra also as L “ pL;^,_, , ˚q, displaying the
two operations  and ˚ of Theorem 3.4. These operations are used to
interpret the implication and the negation from the language of set theory.
For this reason we call these algebraic operations, respectively, implication
and negation.

Lemma 3.5. ([2]) Let L be a linear algebra of the form L “ pL;^,_, , ˚q.
When |L| “ 2 we get that VL “ VB2, where B2 is the two-elements Boolean
algebra, while when |L| “ 3 we get that VL “ VpPS3,˚q.

The names negation and implication for the characteristic operations of
linear algebras are well justified by the the next two lemmas that show
their proximity to the classical case.

Lemma 3.6. ([2]) The negation ˚ of a linear algebra L maps each interme-
diate value of the base set to itself, that is for all a P L such that 0 ‰ a ‰ 1
we have a˚ “ a. Besides that 0˚ “ 1 and 1˚ “ 0.
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Lemma 3.7. ([2]) For any L P V and for any x, y P VL the following
holds: Jϕpxq ψpyqK “ 0 if and only if JϕpxqK ‰ 0 and JψpyqK “ 0. �

4. Logics of Formal Inconsistency and their set theories

In this section we briefly introduce the Zermelian set theories we will
discuss in this paper and the logics on which they are based.

4.1. Logics of Formal Inconsistency. The LFIs form a family of para-
consistent logics that extend the syntactic approach of Da Costa to para-
consitency, by expressing consistency at the meta-linguisitic level by means
of a unary operator which extends the logical language. These logics where
first introduced by João Marcos in his doctoral thesis [12].5 More syntac-
tically, we can define these logics as those which satisfy the following two
conditions:

(1) There is a set of formulas Γ and formulas α and β such that Γ Y
tα, αu & β.

(2) Given a formula α, there is a set of formulas ˝pαq, uniquely deter-
mined by α, such that for any set of formulas Γ and for any formula β,
ΓY ˝pαq Y tα, αu $ β.

The principle (1) implies that LFIs are non-explosive logics, in the sense
that a contradiction does not always entail arbitrary statements, i.e. the
formula αÑ p αÑ βq is not valid. On the other hand, the intuitive mo-
tivation of p2q is that negation is only explosive with respect to consistent
formulas; therefore a theory that admits ˝pαq, α, α is therefore trivial.
This allows us to separate the sentences that make a theory explosive,
from those that do not.

The weakest LFI is called mbC and consists of positive classical propo-
sitional logic pCPL`q, plus a paraconsistent negation  and a consistency
operator ˝ which are added, together with a minimal set of rules to make it
an LFI. In this case ˝pαq is just the singleton t˝αu. Notice that the classical
negation can be defined within mbc as „ α “df. αÑ p˝α ^ α ^ αq. Fur-
thermore, mbc constitutes a conservative extension of CPL`, since every
theorem of CPL` can be recovered in mbC.

Definition 4.1. The logic mbC is defined over the language the classical
propositional language extended by the ˝-operator and is axiomatized by the
following Hilbert-style axioms:

Axiom schemas:

5For an up to date presentation of LFI see [5].
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αÑ pβ Ñ αq pAx1q
pαÑ pβ Ñ γqq Ñ ppαÑ βq Ñ pαÑ γqq pAx2q
αÑ pβ Ñ pα ^ βqq pAx3q
pα ^ βq Ñ α pAx4q
pα ^ βq Ñ β pAx5q
αÑ pα _ βq pAx6q
β Ñ pα _ βq pAx7q
pαÑ γq Ñ ppβ Ñ γq Ñ ppα _ βq Ñ γqq pAx8q
α _ α pAx9q
˝αÑ pαÑ p αÑ βqq pAx10q

Inference rule:

α αÑ β
pMPq

β

Observe that pAx1´Ax9q plus pMPq constitute a Hilbert calculus
over the signature for CPL`, whereas pAX10q is called the gentle law of
explosion and characterizes primarily mbC as an LFI.

Next we will present the first order (with equality) version of mbc, the
LFI Qmbc«.

Definition 4.2. Let Θ be a first-order signature with a «-symbol for equal-
ity and that includes the ˝-operator. The logic Qmbc« is defined by a Hilbert
Calculus that extends that for mbc over the signature Θ, adding the follow-
ing axiom schemas and inference rules:

Axiom schemas:

ϕrx{ts Ñ Dxϕ, if t is a term free for x in ϕ pAx11q
@xϕÑ ϕrx{ts, if t is a term free for x in ϕ pAx12q
αÑ β, whenever α is a variant of β pAx13q
@xpx « xq pAx14q
@x@yppx « yq Ñ pαÑ αrx{ysqq, if y is a variable free for x in αpAx15q

Inference rules:

αÑ β
if x is not free in α p@ ´ Inq

αÑ @xβ

αÑ β
if x is not free in β pD ´ Inq

DxαÑ β
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4.2. LFI-set theories. The basic system of paraconsistent set theory that
we discuss are based on the logic Qmbc« and a first order signature ΘZF ,
which contains, besides the equality predicate «, a binary predicate P and
a further unary predicate C, which stands for the consistency of sets—as
opposed to formulas.

The possibility to distinguish between inconsistent and consistent sets
is intended to capture a seminal intuition of Cantor, who made a clear
separation between consistent and inconsistent totalities, that is, between
sets and collections that are to big to be sets, like the totality of all alephs.
This distinction was not only a terminological curiosity, since Cantor used
the notion of inconsistent totality in a mathematical argument meant to
show that the collection of cardinal is totally ordered by size; [13], p. 410.

Definition 4.3. ([6]) The system ZFmbC is the first order theory with
equality obtained from the logic Qmbc« over ΘZF by adding the following
set- theoretic axiom schemata:

@x@yr@zpz P y Ø z P xq Ñ px “ yqs (Extensionality)
@xDy@zpz P y Ø @w P zpw P xqq (Power Set)
@xDy@zpz P y Ø Dw P xpz P xqq (Union )

@x@yDz@wpw P xØ pw « x_ w « yqq (Pairing)
DwppH˚ P wq ^ p@xqpx P w Ñ xY txu P wqq (Infinity)6

FUNϕ Ñ Db@ypy PØ Dxpx P a^ ϕpx, yqqq (Replacementϕ)7

pDb@xppx P bq Ø ppx P aq ^ ϕpxqqqq (Separationϕ)
Cpxq Ñ pDypy P xq Ñ Dppy P xq^ ∼ Dzpz P x^ z P yqqq (Weak regularity )
px ff yq Ø Dzppz P xq ^ pz P yqq _ Dzppz P yq ^ pz P xqq (Unextensionality )

@xpx P y Ñ pCpxq Ñ Cpyqq (Con0)
@xpCpxq Ñ ˝px “ xqq(Con1)
@x ˝ px “ xq Ñ  Cpxq(Con2)

Notice that in ZFmbC we have at disposal a classical „ negation and a
paraconsistent one  , since this is already the case in QmbC«. Moreover,
we can use x ff y to abbreviate  px « yq and x R y to abbreviate the
formula  px P yq. Notice that the first six axioms, when added to classical
first order logic with identity together with the regular regularity axiom
constitute the ZF set theory. Therefore the non classical flavor of this
set theory stems from Weak regularity, Unextensionality and the axioms
governing the consistency predicate.

6In the axiom of infinity H˚ stands for the strong empty set H˚ :“ tx| ∼ px « xqu.
7For the replacement schema let ϕpx, yq be a formula where variables x and y occur

free. Let z be a fresh variable. Then FUNϕ denotes the following formula: FUNϕ “Df

@x@y@zpϕpx, yq ^ ϕpx, zq Ñ py « zq.
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In [6] it is proved that ZFmbC is non-trivial provided that ZF is consis-
tent. As a consequence, this paraconsistent set theory—as it is the case in
V PS3—does not allow the Russel set in their respective ontology. On the
other hand this set theory is extremely weak with regard to its expressive
power, since we can not define inconsistent sets nor the inconsistency op-
erator. To this aim, we need to consider extensions of ZmbC defined by
taking stronger LFIs and appropriate axioms for the consistency predicate.
The first system we consider is based on the logic mCi.

Definition 4.4. ([6]) The system ZFmCi is obtained from ZFmbC by
adding the following axioms, for n ě 0 :

 ˝ ϕÑ pϕ^ ϕq (ci)
 n`2 ˝ ϕÑ  n ˝ ϕ( n)

@xp Cpxq Ñ  ˝ px « xq(Con3)
@xp Cpxq Ñ  ˝ px P xq(Con4)

The first two axioms (ci) and ( n) transform the underlying logic mbC
into the stronger logic mCi , in which the inconsistency operator can be
defined as ‚ϕ :“  ˝ϕ and inconsistent sets as the dual of consistents sets,
so Ipxq :“  Cpxq.

Definition 4.5. The system ZFCi is obtained from ZFmCi by adding ax-
iom cf :

  ϕÑ ϕ (cf)

Definition 4.6. Let ZFCil be the system obtained from ZFmCi by adding
the following axioms:

 pϕ^ ϕq Ñ ˝ϕ pclq
@xpp px « xq ^ px ff xqq Ñ Cpxqq (Con5)
@xpp px P xq ^ px R xqq Ñ Cpxqq (Con6)

5. LFI-set theories and linear models

In this section we will show that the paraconsistent Zermelian set the-
ories ZFmbC, ZFmCi, ZFCi and ZFCil are not valid in any B˚- valued
model ( we will refer to them simply as linear models). This result is
counterintuitive, since by Theorem 3.4 the three-elements linear algebra is
nothing else then pPS3, ˚q, which is an LFI, as noted in [8]. This is odd
and will reveal serious issues in the conception and motivation of these
Zermelian set theories.
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5.1. ZF-axioms. In order to check whether the axioms of an LFI-set the-
ory is valid in a linear model, we first need to specify the interpretation of
the ˝-operator. Since this operator is the source of classicality, we use the
following evaluation J˝ϕK “ Jϕ Ñ KK _ J„ ϕ Ñ KK, which expresses the
fact that ϕ is consistent if either ϕ or its negation is false. In the three
element case this gives rise to the following table.

ϕ ˝ϕ
1 1
1
2

0
0 1

Figure 3. Three valued matrix for consistency operator

We now check the validity of the axioms of ZFmbC in the linear models.
Since the focus of this work is paraconsistency we require our models to
be non-classical.

Definition 5.1. By a paraconsistent linear algebra we mean a V-algebras
L such that |L| ą 2. The class of such algebras will be indicated by V˚

and its elements V˚-algebras. By a paraconsistent linear model we mean
a V-model of the form VL, with |L| ą 2, and we refer to it as a V˚-model.

By Theorem 3.4 we know that the negation free fragment of ZF is valid in
any linear model. Therefore, any linear model verifies (Union), (Extension-
ality), (Power set), (Separationϕ), (Foundationϕ)8, and (Replacementϕ),
for ϕ negation free.

On the other hand, (Infinity) and (Weak regularity), as presented in [5],
are not valid in any V˚-model. Nonetheless, by a suitable modification we
can obtain their validity, without distorting the spirit of ZFmbC. The issue
with (Infinity) consists in the use of the strong empty set H˚ which cannot
be defined in the V˚-models. In [5], the authors define the strong empty
set using (Separation) and (Extensionality) and the fact that ZFmbC $

ppx P aq ^ ∼ px “ xqq Ø∼ px “ xq. However, this cannot be done in
any V˚-model, since the formula that defines the strong empty set is not
a negation free instantiation of separation. But this is not dramatic, since
we can use a different, negation free, formulation of (Infinity) that suits
better an algebra-valued model treatment of set theory:9

DxrDyp@zpz P y Ñ Kq ^ y P xq ^ @w P xDu P xpw P uqs

8Foundation is here intended in terms of transfinite recursion, which is indeed a
schema

9This definition of the axiom of infinity was already proposed in [1].
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On the other hand, (Weak regularity) states that only consistent sets
cannot be sets of themselves. But notice that (Foundationϕ) is valid in any
V˚-model, for ϕ negation free and therefore we have that Jx P xKL “ 0, for
all x P VL and L P V. Thus even inconsistent sets cannot be ill-founded.
This seems to suggest that we should discard (Weak regularity) in favor of
(Foundationϕ), for ϕ negation free.

For what concerns (Unextensionality) the situation is more serious. Be-
fore stating the relevant result, a word on notation. When we say that an
algebra-valued model satisfies a formula we mean that, for any filter we
can define on the algebra, the evaluation will yields a value in the set of
designated values. In this case we write VL ( ϕ. On the contrary, if we
want to stress the selected filter we use the following notation. Given a
filter G Ď A defined on the base set of an algebra A we write VL (G ϕ to
say that ϕ is valid in VL according to the consequence relation engendered
by the filter G.

Theorem 5.2. Let VL be a V˚-model, then VL * (Unextensionality ).

Proof. We prove that VL *(Unextensionality) by showing that there is a
filter G Ď L such that VL *G(Unextensionality). Notice that pPS3,

˚ q is
contained in any V˚-algebra. Let us call the elements of the base set of
pPS3,

˚ q as t0, 1
2
, 1u. And let define G to be a filter that contains 1

2
, and

hence all the elements above 1
2
.

We can consider the following names as witnesses for all V˚-models:
p 1

2
“ xH, 1

2
y, x “ xp 1

2
, 1y, y “ xp 1

2
, 1
2
y. Now, we simply calculate the value

of (Unextensionality) in a generic V˚-model VL:

“
ł

wPVL

pJw P xK^ Jw P yKq _
ł

wPVL

pJw P xK^ Jw P yKq

“ p1^ 1
2
q _ p1^ 1

2
q

Now we can deduce the truth values of Jw P yK˚ “ 1
2

and Jw P xK˚ “ 0.
Furthermore, it is easy to show that Jx “ yK “ 1 and by Lemma 3.6
J px “ yqK “ Jx “ yK˚ “ 0. Now, we can calculate readily

ł

wPVL

pJw P xK^ Jw P yK˚q _
ł

wPVL

pJw P xK˚ ^ Jw P yKq “
1

2

Since we know that the antecedent of the unextensionality axiom receives
truth value 1

2
and the consequent truth value 0, we can conclude by Corol-

lary 3.11 that the right-to-left implication of (Unextensionality) and there-
fore the axiom itself, receives truth value 0. �
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Notice that the above argument can be adapted to show that, given a
V˚-model VL and a filter G Ď L such that |G| ą 2, there are always three
elements in VL that witness the failure of (Unextensionality). It is sufficient
to choose the relevant intermediate element of L—that plays the role of
1
2
q in pPS3,

˚ q—high enough to be in the filter.10 The case |G| “ 1 is not
relevant since in this case G “ t1u and therefore the resulting consequence
relation is classical.

Therefore (Unextensionality) fails very badly in any V˚-model, disre-
garding the choice of the consequence relation. This is already troubling,
but a possible strategy would consist in biting the bullet and just to elimi-
nate this axioms. However, we will show that the issues of LFI-set theories
lay much deeper in the interpretation of inconsistent sets.

5.2. C-axioms. In [6] the definition of inconsistency is given in terms of
the violation of the basic logical operations of set theory: equality and
membership.

(i)  Cpxq Ø px P xq

(ii)  Cpxq Ø  ˝ px P xq

(iii)  Cpxq Ø px ff xq

(iv)  Cpxq Ø  ˝ px ff xq

We now show that these definitions cannot capture the notion of incon-
sistency in any linear model.

Proposition 5.3. For L P V˚, we have that (i) Jx P xKL “ 0, (ii) J ˝px P
xqKL “ 0, (iii) Jx ff xKL “ 0 and (iv) J ˝ px ff xqKL “ 0.

Proof. Notice that we have already argued that (Foundationϕ), for ϕ nega-
tion free, yields Jx P xKL “ 0. This establishes (i). From (i) we know that
Jx P xKL receives a classical truth value. Hence we deduce J˝px P xqKL “ 1.
Then by Lemma 3.6 J ˝ px P xqKL “ 0, establishing (ii). Adapting
Proposition 1 of [10], we know that for every x P VL Jx « xKL “ 1 and
upxq ď Jx P uK for every u in the domain of x, so Jx ff xKL “ 0. From this
follows (iii). Furthermore, given the classical truth value of Jpx ff xqKL it
follows that J˝px ff xqKL “ 1. Finally, given Lemma 3.6 we can conclude
J ˝ px ff xqKL “ 0, which settles (iv).

�

10Notice that it is in this part of the argument that we use Lemma 3.6, to show that
an intermediate value is mapped to itself by the ˚-negation
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This proposition shows clearly that none of the above interpretations of
inconsistency can ever be realized in any V˚-model.

6. Conclusion

The failure of the characteristic axioms of these LFI-set theories, to-
gether with the impossibility to define inconsistency in the way proposed in
[6], leaves us with two options. Either we assume that, @x P VLJ CpxqKL “
0, therefore assuming that every set is consistent, or we can try to modify
the interpretation of the consistency predicate in order to provide exam-
ples of inconsistent sets in V˚-models. We argue that both strategies are
unfeasible.

Let us make explicit the two horns of this dilemma:

Horn 1: The first strategy consists in eliminating inconsistent totalities
from the picture. This option is, as a matter of fact, not very far from
Cantor’s ideas. Indeed in several letters to Hilbert and Jourdain ([13],
p.425–435) Cantor identified sets and consistent totalities, arguing that
the universe of set was the collection of all totalities that did not lead to
any contradiction. On this basis we can therefore postulate an axiom, that
we can call Cantorian Axiom, that expresses this intuition.

Cpxq Ø Setpxq (Cantorian Axiom)

Now, if we extend ZFmbC with the Cantorian Axiom we obtain that
all V-models validate this set theory and all its extension. Indeed these
LFI-set theories would all be equal ZF, since we have just removed all
inconsistent sets. However, this move would totally trivialize the main
motivation of using a consistency predicate in dealing with an inconsistent
set theory, as clearly expressed [5], p. 366.

The main idea is to assume that not only sentences can be
taken to be consistent or inconsistent, but also that sets
themselves can be thought to be consistent or inconsistent.
We establish the basis for new paraconsistent set-theories
(such as ZFmbC and ZFCil) under this perspective and es-
tablish their non-triviality, provided that ZF is consistent.

Horn 2: On the other hand, we could try to modify the interpretation
of the (in)consistency predicate, in order to have at least one set x such
that J CpxqK ě a, for a designated value a ‰ 1 of a V˚-algebra. However,
also this strategy is doomed to fail, since no V˚-model would be able to
validate ZFmCi, or ZFCi, or ZFCil.
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Lemma 6.1. Let VL be a V˚-model, G Ď L a filter containing an element
a P L that is different from 1, and x P VL such that J CpxqKL ě a. Then
VL *  Cpxq Ñ  ˝ px “ xq

Proof. Due to Proposition 1 in [10], we know that J˝px “ xqKL “ 1 and
therefore J ˝ px “ xqKL “ 0. Then by Corollary 3.11 :

J CpuqKL ě a J ˝ pu “ uqKL “ 0.

�

Notice that in this case we would validate (vacuously) all the axioms
of ZFmbC that govern the consistency predicate, with exception of con0.
This is due to the fact that either  Cpxq occurs in the consequent of an
axiom, so that the antecedent is always false, as it is the case with con2,
or Cpxq occurs in the antecedent, so that the consequent will be trivially
true, as in con1.

Besides the formal problems that arise from accepting the existence of
inconsistent totalities, there is also a deeper conceptual issue. A charitable
interpretation of the inconsistency predicate—that seems faithful to the
history of set theory—would consists in equating inconsistent objects and
proper classes. However, at a closer look the axioms of ZFmbC force us
to discard this possibility, since the axiom con0 would implies that the
universal class is a set and not a proper class. Indeed, it says that the
property of being a set is propagated P-upward, which clearly cannot be
the case since all elements of V are, by definitions, sets.

We can therefore conclude, from Horn 1 and Horn 2, that the LFI-set
theory we discussed are not valid in the most natural models for Zermelian
set theories at disposal. This is even more belittling, considering that
the internal logic of VpPS3,˚q is an LFI. Not only we need to give up the
characteristic axiom (Unextensionality), but Horn 2, together with the
charitable interpretation of inconsistent totalities as classes, shows that
not even the weak ZFmbC-axioms that govern the C-predicate can hold
in a V˚-model. We believe that the fact that inconsistent totalities do
not find a place in these LFI-set theories is a serious betrayal of their
original motivation, which therefore suggest a fresh new start. The failure
of this attempt leaves open the challenging problem of making inconsistent
totalities compatible with a Zermelian set theory based on a paraconsistent
logic. We leave this open question for future work.
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