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Abstract. In this article we review Cantor’s contribution to the
construction of a theory of infinity. We will present and discuss the
technical achievements and the philosophical ideas that brought
Cantor to the creation of set theory and to its justification.

Introduction

The history of infinity is probably as long as the history of human
thought. In its multifaceted aspects the concept of infinity has always
amazed, frightened, or challenged the sharpest minds. The close con-
nection between infinity and many different areas of human knowledge
shows different, often frustrated, attempts to make this concept intel-
ligible. In the effort of dominating the frightening abysses of infinity
many contributions have been offered to philosophy, religion, mysti-
cism, literature, and science.

Of course the smaller attempt to bring to unity these innumerous
contributions to the history of human culture would fall short of the
heterogeneous ideas and perspectives that animated the many brilliant
minds that populated this story1.

Although deeply connected to this general cultural development, the
history of infinity in mathematics is easier to trace and to describe.
Moreover, because a direct confrontation with infinity was avoided until
very recently, much of this story can be safely considered pre-history.
Indeed, the full acceptance of infinity in mathematics happened only
in the second half of the XIX century and, to make the historical work
even neater, it founded its main champion in a single man, Georg
Cantor, who following the steps of Prometheus brought light to the
mathematical analysis of infinity.

The development of ideas is way more complex than the necessary
simplification operated by history, and there are mathematical and
philosophical reasons to argue that this theory of infinity was not born
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1However, we find in the literature some attempts [21], [6], [19].
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from Cantor’s mind as Athena from Zeus’. As accurately described in
[9] a favorable idealistic cultural environment, together with the con-
tributions and ideas of Riemann and Dedekind, paved the way for the
acceptance of infinity, introducing into mathematical practice notions
and concepts whose full-fledged justification needed the recognition of
infinity as a proper mathematical concept.

However there is a clear difference between a practical acceptance
and a theoretical defense. This is why we can safely consider Cantor
as the main actor in the creation of a mathematical theory of infin-
ity. His engagement and fundamental discoveries opened a new era for
mathematics; one where infinity was not anymore considered as a façon
de parler, but the central concept of mathematics; and one where its
axiomatic counterpart, set theory, rapidly became the lingua franca of
the mathematical community, thus realizing Leibniz’s dream.

This Copernican revolution is what we will briefly outline in these
pages. After a very short overview of the main concept and of the pre-
Cantorian history of infinity, §1, we will present the contribution of
Cantor to the theorization of infinity, in §2. Then in §3 we will present
a more philosophical perspective on Cantor’s view and on the justifi-
cation of infinity, contextualizing Cantor’s ideas with the foundations
of mathematics of the end of the XIX century.

1. Infinity in mathematics

The concept of infinity is, explicitly or indirectly, at the center of
much of the philosophical discussion in ancient Greece. Two forms
of infinity were categorized and discussed—and this distinction would
survive until Cantor. Following an Aristotelian terminology, infinity
can be understood potentially or actually.

Potential infinity is assimilated to unboundedness. Something is po-
tentially infinite if its size can always be augmented without this process
never coming to an end. Natural numbers were seen as a potentially
infinite collection of numbers, since the operator of adding one more
will always give rise to larger and larger numbers.

Of course, by definition, the process of forming a potential infinite
collection will never come to an end. However, if we abstract from the
process and we consider only what results from it, that is the complete
infinite totality of objects so produced, we arrive at the notion of actual
infinity. The collection of all natural numbers build by the successor
operation, considered as a whole complete collection, can thus be seen
as an example of an actual infinite collection.
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This distinction instantiates also another dichotomy, more philosoph-
ical, under which we can understand infinity: its twofold character
both intensional and extensional. Indeed, viewed as a process, natural
numbers could be described as the collection of numbers that are pro-
duced by the iteration of the successor operation, starting from zero.
In other terms natural numbers could be captured intensionally giving
the rules that allow the construction of this collection. But they can
also be captures extensionally, specifying the objects that compose N;
i.e., the natural numbers.

While potential infinity is an essential component of any form of
mathematics, may it be reducible to arithmetic or geometry2, the step
needed to account for actual infinity is one that poses theoretical diffi-
culties. In which sense an infinite totality should be understood as one
complete thing? The basic distinction between one and many seems to
blur when infinity is reached. Moreover, the practice-oriented origin of
mathematics cannot offer examples to fill the conceptual gap needed
to pass from potential to actual infinity.

Although a complete understanding of the Aristotelian position is
still a matter of debate ([14], [16], [7]), the influence of Aristotelian
philosophy had the effect of banning actual infinity from mathematics,
being considered out of reach for human rationality. This cultural
background influenced the subsequent two thousand year of history,
therefore obstructing a mathematical treatment of actual infinity.

Besides rare exceptions, like Saint Augustin and Leibniz, actual infin-
ity did not receive may words of appraisal and the existence of actually
infinite mathematical collections was considered contradictory or sim-
ply meaningless. Because infinity was a common attribute of God or
Its properties, the human rational finite character was considered an
insurmountable limit in understanding infinity.

Still in 1831 Gauss wrote, in a letter to Heinrich Schumacher, “[. . . ] I
protest above all against the use of an infinite quantity as a completed
one, which in mathematics is never allowed. The infinite is only a
faon de parler, in which one properly speaks of limits.” These words
exemplify a common attitude that Kant had acknowledged few years
before in his Critic of the Pure Reason, placing infinity among the
antinomies of reason3.

2Not only the size of numbers is not bounded, but neither are the length of
segments in Euclid’s geometry. So to make possible arbitrary large constructions.

3The role of Kant is, however, not only negative. An important change that is
present in his work, and that will later help the development of modern logic and
indirectly a more liberal treatment of infinity, is the idea that existence is not a
property of objects. Indeed, from this perspective existential statements do not fit
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Gauss’s need to talk so authoritatively against infinity is explained
by a cultural shift that prepared the ground for its triumph in the
late XIX century. Although still in a potential form, infinity entered
the scene of mathematics in the modern era, when the infinitesimal
analysis and the related notion of limit became essential tools in the
application of mathematics to nature.

It was with the urge to better grasp such a fruitful tool that math-
ematicians of the XIX century dedicated their efforts in what is now
called the foundation of analysis, aimed at freeing calculus from its ge-
ometrical justification. These studies brought not only the ε-δ presen-
tation of calculus, but also a deeper and theoretically mature reflection
on the nature and definition of the real line.

It is in this mathematical context that Cantor obtained his first
fundamental results. The act of birth of a theory of actual infinity is the
publication of On a property of the set of real algebraic numbers [2], in
1874. In this paper, although with not much ado, Cantor proved what
is nowadays called Cantor’s theorem: the cardinality of R is strictly
greater than that of N.

2. Cantor’s theory of infinity

The form in which Cantor’s theorem first appeared in print, in 1874,
it is not with the well-known diagonal argument that will become the
characteristic mark of his logical contribution to the theory of infinity.
Instead, Cantor made use of the Bolzano-Weierstrass theorem, showing
that for any enumeration of real numbers indexed by natural numbers,
it is possible to find a new real number that does not belong to the
enumeration. Indeed, given a real interval (a, b), either only finitely
many numbers of the enumeration fall within the interval, and therefore
the theorem follows, or infinitely many do. In the latter case these
numbers determine a countable family of closed nested intervals to
which we can apply Bolzano-Weierstrass theorem.

2.1. The concept of power. The key ingredient for the modern for-
mulation of Cantor’s theorem is the notion of power, that is, of car-
dinality. And it is only in 1878, in the paper A contribution to the
theory of manifolds [3], that Cantor defines the notion of “having the
same number of elements” in terms of a one-one correspondence. More

anymore in the Aristotelian structure of subject-predicate. A thorough analysis of
existential statements will lead Frege to introduce a distinction between quantifiers
and other logical constants, while others to offer different views on the relationships
between existential sentences and mathematical reality. We will come back to this
in §3.
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formally, two sets A and B have the same cardinality or power in case
there is a bijective function f : A→ B; in symbols |A| = |B|.

Although quite natural for our modern look, this move was overcom-
ing a long tradition of criticism to infinity due to the counterintuitive
consequences of witnessing sameness in cardinality by bijective func-
tions. In 1638, Galileo in the Discorsi e dimostrazioni matematiche
intorno a due nuove scienze argued that ‘more’ or ‘less’ could not be
applied to infinite quantities, since there were as many squares of natu-
ral numbers as natural numbers; and this contrasted with the fact that
squares form a proper subset of natural numbers.

Therefore, Cantor posed at the very heart of his theory of infinity
a notion of cardinality that considered Galileo’s observation as non-
paradoxical. Where Cantor lead many followed. Frege will then base
the definition of natural numbers on the concept of “being in a bijection
with”, in [10] §63, and Dedekind, in [8] §5, will propose a definition of
infinity in terms of being in bijection with a proper subset. Even more
interestingly, Dedekind defined the notion of finite4 in terms of not
being infinite in the above sense, therefore inverting the conceptual
order of priority between finite and infinite.

This notion of cardinality, although based on the acceptance of the
counterintuitive properties of the infinite, was shown to have properties
that nicely fit with its intuitive interpretation.

First of all it is possible to define a notion of order between cardi-
nalities, saying that |A| ≤ |B| iff there is an injective function from
A to B (and |A| < |B| iff |A| ≤ |B| and there is no bijective func-
tions from A to B ), in such a way that the obvious properties of a
relation between magnitudes are respected. Not only this ≤-relation is
clearly reflexive and transitive, but it is an important result, bearing
the names of Schröder and Bernstein, that if |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|, thus showing the antisymmetry of the ≤-relation.

Moreover Cantor showed that cardinalities could generalize the op-
erations of finite quantities, since sum, product, and exponentiation
could be defined as follows:

|X|+ |Y | = |X × {0} ∪ Y × {1}|,
|X| · |Y | = |X × Y |,
|X||Y | = |XY | where XY = {f : f is a function from Y to X}.

These operations do generalize to arbitrary cardinalities the usual
arithmetical operations on natural numbers, since if X has n-elements

4This is what is nowadays called Dadekind-finite. This notion is equivalent to
the standard one in the presence of the Axiom of Choice, but in the absence it is
not necessarily so.
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and Y m-elements, we get that X × Y has n ·m-many elements, Y X

the set of functions f : X → Y has mn-many elements, and X ×{0} ∪
Y × {1} has m+ n-many elements.

In other terms, the notion of cardinality was shown to be materially
adequate to play the role of measuring size, while extending the usual
notion of finite quantity.

2.2. The Continuum Problem. With the notion of power at dis-
posal it is possible to express more precisely a concern that Cantor
already discussed at the end of his 1874 paper and that will then be
called the Continuum Problem. Since |N| < |R|, is it possible to dis-
play other infinite cardinalities among the infinite subsets of R? Cantor
thought that that was not the case. This proposition was then called
the Continuum Hypothesis (CH) and can be formalized saying that if
X ⊆ R, is infinite, then either |X| = |R|, or |X| = |N|.

Not only Cantor spent much of his life in the attempt to prove (or
sometimes disprove) CH, but much of the subsequent history of set
theory was driven by the attempt to formally decide whether CH holds.
The strategies to attack this difficult problem can be classified into two
general categories, examples of which can be found already in the work
of Cantor. It is possibile either to study the properties of different
subsets of the reals of growing complexity, or to develop a general
theory of infinite cardinalities, with the aim of finding the right place
of |R| and |N| within this theory. The former gave rise to descriptive
set theory, while the latter to pure set theory.

The result that later will be consider the first step towards descrip-
tive set theory was obtained by Cantor and Bendixson, who showed
that any closed subset of R has the perfect set property (PSP): i.e.,
either it is countable or it is a perfect set, that is, closed with no iso-
lated point. Then, since a perfect set is always in bijection with R,
the Cantor-Bendixson showed that closed sets could not offer a coun-
terexample to CH. The study of regularity properties as PSP will later
include Lebesgue measurability and the Baire property and through
the contributions of the French and the Russian schools5, at the be-
ginning of the XX century, will create the main topic of investigation
of descriptive set theory, showing that larger and larger classes cannot
offer counterexamples to CH6.

5An interesting presentation of this story can be found in [12], where the de-
velopment of set theory in Russia is also linked to a mystical orthodox heresy, the
Name Worshipping, that recognized the creative power of God’s name.

6That Borel sets have the PSP was later shown by Martin in ZFC [20], while for
larger classes large cardinals are needed. Moreover a fruitful interaction between
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For what concerns pure set theory, Cantor investigated other com-
mon mathematical structures in order to find new examples of infinite
cardinalities. His efforts were, nonetheless, unsuccessful and surprising
at the same time. One unexpected result, published by Cantor in the
1878 paper, was that R and Rn have the same cardinality. But the
real turning point in pure set theory happened when Cantor placed
the notion of ordinal number at the very center of his theory of infin-
ity. Indeed, the theory of well-ordered sets offered concrete examples
of new infinite sets, which could not otherwise been found in ordinary
mathematical practice.

2.3. The notion of ordinal. A linear order (X,<) is a well order if
< is a linear order on X such that any non-empty subset of X has a
least element according to <. For example, the natural numbers with
the usual order (i.e. the structure (N, <)) is a well order.

Clearly an initial segment of N, say {0, 1, 2, . . . , n−1}, is a finite well-
ordered set. Then, let us call n the well-ordered set {0, 1, 2, . . . , n− 1}
(i.e. the set {0, 1, 2, . . . , n−1} together with the natural well order of its
elements) and notice that n∪ {n} = {0, 1, 2, . . . , n}. Consequently, we
can identify this simple set theoretic union with the successor operator,
as defined in N, and thus give to n ∪ {n} the name n + 1. Since, for
every n ∈ N, we have n ∈ n+1 and since n represents an ordered set on
length n, we can collect all n’s together and call this new well-ordered
set ω. Therefore, ω exemplifies the well order of N = {0, 1, 2, . . .}. But
now, having at disposal a set theoretic version of the successor operator
we can define ω+ 1 as ω ∪ {ω} and then continue to create longer and
longer well-ordered sets.

The well-ordered sets thus constructed are called ordinals and they
form a collection of canonical representatives of well-ordered sets. More-
over, while ω and ω + 1, as ordered sets, display two different types of
orders, nonetheless they have the same cardinality: |N| = |ω| = |ω+1|.
What Cantor surprisingly discovered is that collecting all possible or-
dinals of, at most, countable cardinality we can naturally order these
well-ordered sets confronting their lengths (e.g. ω comes after any n,
but before ω + 1). The resulting ordered set, called ω1, however has
not countable cardinality but any of its initial segments is countable.
Thus ω1 was defined to be the least uncountable ordinal, in this natural
order induced by the length of ordinals.

descriptive and pure set theory allowed to isolate an important class of sets, called
universally Baire sets, that plays a fundamental role in one of the most promising
programs towards the solution of CH, created and pursued by Woodin [22].
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The above argument can of course be iterated. Collecting together all
ordinals with the same cardinality of ω1 we can create a new ordinal
of higher power, called ω2, that is the second infinite cardinal after
|N|. Ordinals thus offer both concrete examples of larger and larger
cardinalities and a way to enumerate them, by what Cantor called the
ℵ-function. The ℵ-function is a function that uses ordinals to well order
infinite cardinalities: ℵ(0) = |N|, then called ℵ0, ℵ(1) = |ω1|, called ℵ1,
ℵ(2) = |ω2| called ℵ2, and so on. In this sense ordinals allowed Cantor
to reach larger and larger examples of infinite powers; ones he could
not find by analyzing well-known structures taken from mathematical
practice.

Interestingly, also the first approach to the solution of the Continuum
Problem makes an extensive use of ordinals. Indeed the definition of
more and more complex subsets of R like Borel sets, analytic sets (i.e.
projection of closed subsets of R2), co-analytic sets (i.e. complements
of analytic sets), and projective sets (obtained by the operation of
projection and complementation from subsets of Rn, for n ∈ N) is
given by the possibility to iterate beyond the finite case the basic set
theoretic operations.

In other terms, the key ingredient that allowed Cantor to develop a
concrete and well-determined theory of infinity was the notion of or-
dinal number. Cantor viewed this notion as a natural extension of the
concept of number through the transfinite. In 1883 Cantor attempted a
conceptually broader presentation of his ideas in the paper Foundations
of a general theory of manifolds: a mathematico-philosophical investi-
gation into the theory of the infinite [5], justifying the introduction of
the ordinals from the following perspective.

I am so dependent on this extension of the number con-
cept that without it I should be unable to take the
smallest step forward in the theory of sets; this circum-
stance is the justification (or, if need be, the apology)
for the fact that I introduce seemingly exotic ideas into
my work. For what is at stake is the extension or con-
tinuation of the sequence of integers into the infinite;
and daring though this step may seem, I can neverthe-
less express, not only the hope, but the firm conviction
that with time this extension will have to be regarded
as thoroughly simple, proper, and natural7.

7[5], p. 882.
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As in the case of the notion of power, Cantor was firmly convinced
that ordinals displayed properties analogous to those of the finite nat-
ural numbers. This attitude that has been labelled Cantor’s finitism
by Hallett [13] was used not only to justify the extension of the con-
cept of number, but also as a guiding principle for the introduction
of the rules that governed the infinite, in analogy with the finite. In-
deed, Cantor’s finitism can be easily explained as the conviction of a
substantial uniformity between the finite and infinite realms.

On this ground Cantor extended the arithmetical operations of sum
and product to well ordered sets.

(α,<α)+(β,<β) = (α∪β,<α+β), where <α+β is the order that
enumerates first all elements of α, according to <α, and only
later all elements of β, according to <β.
(α,<α) · (β,<β) is given by the ordered set obtained by laying
down an ordered series of copies of (α,<α), according to the
order displayed by (β,<β). Therefore the order of the product is
given by the lexicographical order in which the first component,
from (β,<β), tells in which copy of (α,<α) we are, while the
second where we are within that copy.

The application of these operations to ordinal numbers allowed Can-
tor to develop a rich and interesting ordinal arithmetic and to counter
old objections to the possibility to reason with infinite quantities. A
common objection to infinity, that dated back to Aristotle, consisted
in saying that an infinite quantity would annihilate the addition of any
finite quantity, thus making impossible any such arithmetic. But Can-
tor showed that although this is the case for 1 + ω = ω, since ω was
defined as the collection of all n’s, this is not the case for ω + 1 6= ω.

This example also shows a delicate aspect of Cantor’s theory of infin-
ity. Although developed in accordance with the rules of arithmetic and
as an extension of the concept of number, Cantor’s theory displayed
also the differences between the finite and the infinite; in the above
example the failure of the commutativity law for the ordinal sum.

The analogy with the finite case cannot completely justify the new
principles on which Cantor’s theory of infinity is based, therefore open-
ing an important debate on the justification of the axioms of set theory
that is still alive in nowadays ([1], [18], [17], [15]). Far from being a
problem, this remark helps to recognize the breadth of Cantor’s con-
tributions, where mathematical and philosophical elements are deeply
intertwined.

2.4. Types of infinity. An important novelty in Cantor’s treatment
of infinity was not only the creation of a new arithmetic for the infinite
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numbers, but a new classification of kinds of infinities. The difference
between finite and infinite was made smaller, but a form of impenetra-
ble infinity remained.

Cantor distinguished between the transfinite, where we find the in-
finite quantities like ordinals, that although infinite can still be aug-
mented, and the Absolute, that is the infinite in its proper form and
that cannot be subject of any human inquiry.

I have no doubt that, as we pursue this path ever further
[i.e. the study of larger and larger infinite numbers], we
shall never reach a boundary that cannot be crossed;
but that we shall also never achieve even an approxi-
mate conception of the absolute. The absolute can only
be acknowledged but never known–and not even approx-
imately known. [. . . ] The absolutely infinite sequence of
numbers thus seems to me to be an appropriate symbol
of the absolute [. . . ] 8.

In other terms, although the possibility of generating larger and
larger infinite numbers will never come to an end, there is still a notion
of infinity that cannot be attained by this process, one that Cantor
identified with the whole collection of infinite numbers.

The description of the Absolute took in Cantor’s writing a theological
character that cannot be separated by his work, at pain of loosing unity
and coherence of his theory of infinity. Indeed, not only Cantor viewed
his work as a sort of revelation, but the main existence of infinite
numbers was justified in theological term, recurring to the conviction
that any possibility is actually realized in God’s mind.

In more mathematical terms, it is easy to show that the collection
of all transfinite numbers cannot have a cardinality. In some sense, it
is too big to be analyzed in terms of cardinality. This was a fact well
known to Cantor and, far from being paradoxical, it was considered as
a sign of the incommensurability of the Absolute and of the distance
between men and God.

But if the collection of all transfinite numbers was out of reach for
human understanding, on what ground Cantor acknowledged the exis-
tence of transfinite numbers? Again the key notion is that of ordinal
number, since the notion of power is realized in terms of ordinals; i.e.
ℵ0 is exemplified by ω, ℵ1 by ω1, and so on.

8[5], p. 916.
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3. Language and mathematical reality

Initially, ordinals formed a mere notational system and were pre-
sented as symbols of infinity [4]. They indexed the steps needed to
define new sets of reals, thus allowing to iterate these constructions
into the transfinite: i.e. beyond ω. The first example of such operation
was the definition of a derived set i.e., the set of all limit points of a
given X ⊆ R. Indeed, the collection of all accumulation points of a
set can itself have accumulation points and Cantor discovered that the
process of taking the derived set did not necessarily end after ω-many
steps.

But the shift from indexes to full existent mathematical objects is not
innocuous and needed to be justified mathematically and philosophi-
cally. For what concerns the former, Cantor appealed to what has
been later called the domain principle. This consists in arguing that
if a quantity can take different values, then the domain of variability
must itself exist. Therefore, for example the set of natural numbers
must be an existent complete totality, since we use variables for natu-
ral numbers that can range over the entire set. The domain principle
is simply a collapse of the notions of potential and actual infinity—in
favor of the actual infinity—and thus it is a petitio principii more than
an argument. However, in Cantor’s view the domain principle received
a clear and strong justification on a theological ground, since there is no
difference between potentiality and actuality in God’s eyes. Of course
this cannot help a reader that rejects an argument based on essential
properties of the divine intellect. However, deprived of this theologi-
cal character, Cantor’s position is a simple declaration of realism with
respect to mathematical objects.

In his more philosophical defense of his ordinal theory, Cantor [5]
exposed with more details his view on existence in mathematics. Can-
tor distinguished among two senses in which natural numbers exist,
calling them immanent reality and transient reality. This is how these
two forms of existence are described, in Cantor’s words.

First, we may regard the integers as actual in so far
as, on the basis of definitions, they occupy an entirely
determinate place in our understanding, are well distin-
guished from all other parts of our thought, and stand to
them in determinate relationships, and thus modify the
substance of our mind in a determinate way; let us call
this kind of reality of our numbers their intrasubjective
or immanent reality. But then, reality can also be as-
cribed to numbers to the extent that they must be taken
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as an expression or copy of the events and relationships
in the external world which confronts the intellect, or to
the extent that, for instance, the various number-classes
(I), (II), (III), etc. are representatives of powers that
actually occur in physical and mental nature. I call this
second kind of reality the transsubjective or the transient
reality of the integers9.

In other words, mathematical objects exist in so far as we can define
them, but also in the strongest sense of the word existence. Moreover,
Cantor sees a perfect correspondence between these two forms of re-
ality, to the extent that mathematicians should only care about the
immanent reality since the “linking of both realities has its true foun-
dation in the unity of the all to which we ourselves belong.” [5], p. 896.
This is the theoretical ground on which Cantor affirmed the freedom of
mathematics. The mathematical work is completely free, since what
seems to be the creation of new ideas, concepts, and objects by means
of definitions, it is in essence the discovery of an autonomous already
existing reality.

3.1. From näive to formal. The deep connection between language
and mathematical reality displayed in Cantor’s work is a common trait
of many authors of the end of the XIX century. Remember that
Dedekind in his famous paper on the foundations of number theory,
Was sind und was sollen die Zahlen? [8], summarizes his work as
follows: “My answer to the problem propounded in the title of this
paper is, then, briefly this: number are free creation of human mind”.
Dedekind’s work is often considered closer to what will later become
a logicist position in the foundations of mathematics, quite distant
from Cantor’s realism. But to appreciate the transversality of this
tight connection between language and mathematical reality, remem-
ber that also Hilbert expressed a similar belief when he wrote, in a
letter to Frege [11], in 1899, that his criterion for existence and truth
in mathematics was consistency; a notion that he saw from a syntactic,
hence linguistic, point of view.

One might conjecture that the emergence of the philosophical diffi-
culties of the connection between language and mathematical reality,
and therefore of the many different perspectives cited above, is inextri-
cably connected with the emergence of infinity as a truly mathematical
concept. And it might not be the case that the study of a notion so

9[5], p. 895-896.
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divergent from our everyday experience happened in a time when ge-
ometry started to abandon the intuitive Euclidian interpretation and
embraced a more liberal perspective. In [9] we find an interesting re-
construction of the fil rouge that connected the works of Riemann,
Dedekind, and Cantor and that well explains the initial terminology of
manifold, to refer to sets, and of the theory of manifolds, to refer to
set theory.

Be as it may, it was an uncritical perspective of the relationships
between language and mathematical reality that motivated the tacit
adoption of what will later be called the principle of näıve comprehen-
sion: the possibility to determine a set by a property. Although Frege
was a fierce opponent of the creative power of language, saying that
“This theory imagines that all we need do is make postulates; that
these are satisfied then goes without saying. It conduct itself like a
God, who can create by his mere word whatever he wants” [10], his
work too fell victim of this uncritical perspective, when Russell’s para-
dox, in 1901, showed that it is possible to define objects that do not
exist.

Russell’s famous paradox states that the set of all objects that do
not belong to themselves —which is itself a well defined property—
cannot exist. This is easily shown by the following argument. Define
R = {x : x /∈ x} and notice that if R were a set, we could ask whether
R ∈ R. If this was the case R would satisfy its defining property, i.e.
it would be a set x which does not belong to itself, hence R /∈ R. By
a similar argument we can also infer that if R /∈ R, then R ∈ R. Thus
we get that R ∈ R if and only if R /∈ R: a contradiction.

But Cantor’s faith in a perfect correspondence between an immanent
and a transient reality was not only disproved by Russell’s paradox,
but also by Zermelo’s proof of the Well-Ordering Theorem (WOT) in
1904 [23]. Although Cantor went far enough to say that the possibility
of well-ordering a set needed to be considered as a law of though,
nonetheless the intense debate that followed Zermelo’s introduction of
the Axiom of Choice (AC) in the proof the WOT made clear that the
non-constructive character of AC was responsible of the existence of
sets lacking a linguistic characterization; e.g. choice functions to which
it does not correspond any law. And this too is a failure of a näıve
correspondence between language and mathematical reality. Indeed it
showed that there are objects that cannot be named.

After these events it become clear that this uncritical perspective
towards the descriptive or creative role of language was problematic.
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Cantor’s theory of sets needed a more secure ground: the linguistic ac-
cess to infinity needed to be tamed and justified. This is why Hilbert—
one of the strongest defender of infinity in mathematics—suggested
Zermelo to apply his new version of the axiomatic method to set the-
ory.
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In Zermelo’s words, this task amounted to the following.

Now in the present paper I intend to show how the en-
tire theory created by Cantor and Dedekind can be re-
duced to a few definitions and seven principles, or ax-
ioms, which appear to be mutually independent10.

It is therefore in 1908 that starts the history of axiomatic set theory,
one in which the notion of set and its axiomatic treatment will offer
the tool to secure the fast growing free mathematics, that will later be
called, by Hilbert, “the Paradise the Cantor created for us”. But this
is another story.
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10[24], 200.
15



[10] G. Frege. The Foundations of Arithmetic: A Logico-Mathematical Enquiry into
the Concept of Numbers. Blackwell, 1950.

[11] G. Frege. Philosophical and mathematical correspondence. Basil Blackwell,
1980.

[12] L. Graham and J. Kantor. Naming Infinity. Harvard University Press, 2009.
[13] M. Hallett. Cantorian Set Theory and Limitation of Size. Clarendon Press,

1984.
[14] J. Hintikka. Aristotelian infinity. Philosophical Review, 75:197–212, 1966.
[15] P. Koellner. On reflection principles. Annals of Pure and Applied Logic,

157(2)(4):206–219, 2009.
[16] J. Lear. Aristotelian infinity. Proceedings of the Aristotelian Society, 80:187–

210, 1981.
[17] P. Maddy. Defending the Axioms: On the Philosophical Foundations of Set

Theory, publisher=Oxford University Press, year=2011,.
[18] P. Maddy. Naturalism in mathematics. Clarendon Press, 1997.
[19] E. Maor. To Infinity and Beyond. A Cultural History of the Infinite. Princeton

University Press, 1987.
[20] D. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
[21] D. Foster Wallace. Everything and more : a compact history of infinity. W .W

. Norton & Company, 2003.
[22] H. Woodin. The realm of the infinite. In Infinity. New research frontiers, pages

89–118. Cambridge University Press, 2011.
[23] E. Zermelo. Beweis, daßjede Menge wohlgeordnet werden kann. Mathematische

Annalen, 59:514–516, 1904. English transl.: Proof that every set can be well-
ordered, in J. van Heijenoort, editor, From Frege to Gödel: A Source Book in
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