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Abstract. In this article we compare the notions of genericity and
arbitrariness on the basis of the realist import of the method of forcing.
We argue that Cohen’s Theorem, similarly to Cantor’s Theorem, can
be considered a meta-theoretical argument in favor of the existence
of uncountable collections. Then we discuss the effects of this meta-
theoretical perspective on Skolem’s Paradox. We conclude discussing
how the connection between arbitrariness and genericity can be used
to argue in favor of Forcing Axioms.

Introduction

Forcing was invented by Paul Cohen in 1963 and it is now considered
the cornerstone of contemporary set theory. This technique was invented
to produce independence results and, practically, allows one to extend a
countable transitive model of ZFC to a larger one, that is forced to verify
or falsify a given statement. The key ingredient of this construction is
provided by sets that are generic with respect to a model, that is, collections
with no particular properties besides those they have in virtue of being
generic.

Although forcing has been extensively studied from a mathematical point
of view, this technique still does not occupy a central role in the contem-
porary philosophical debate1.

This paper intends to fill this gap proposing a philosophical analysis of
the notion of genericity. It is interesting to notice that the need for such
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1Nonetheless, the plethora of different models of ZFC provided by forcing gave rise
to new mathematical structures, called multiverses, that have been thoroughly inves-
tigated, with different philosophical aims and perspectives. A tentative sketch of this
debate should include the works of Friedman ([10], [9]), Hamkins ([13], [14]), Magidor
([19]), Shelah ([24]), Steel ([5], [26]), Väänänen ([27]) and Woodin ([31], [32]).
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clarification was felt quite early after the invention of forcing, in 1967, by
Mostowski.

Models constructed by Gödel and Cohen are important not
only for the purely formal reasons that they enable us to
obtain independence proofs, but also because they show us
various possibilities which are open to us when we want
to make more precise the intuitions underlying the notion
of a set. Owing to Gödel’s work we have a perfectly clear
intuition of a set which is predicatively defined by means of a
transfinite predicative process. No such clear interpretation
has as yet emerged from Cohen’s models because we possess
as yet no intuition of generic sets; we only understand the
relative notion of a set which is generic with respect to a
given model.2

Without committing ourselves to an obscure notion of intuition, we in-
tend to analyze the notion of genericity in connection with the notion of
arbitrary set, that is considered a key notion in the foundations of set the-
ory [6]. In arguing for an analogy between these two notions our aim is
twofold: on the one hand we intend to give a more philosophical content to
the technical notion of genericity, while on the other hand we will use this
analogy to justify the axiomatic version of forcing constructions: Forcing
Axioms.

The article is structured as follows. In §1 we present and discuss the
connection between generic and arbitrary sets. In §1.1 we discuss the con-
nection between Cantor’s Theorem and Cohen’s Theorem for what con-
cerns their realist import and in §1.2 the effect that Cohen’s Theorem has
on Skolem Paradox. Finally §2 will offer a justification of Forcing Axiom
in terms of the arbitrariness of generic sets.

1. Arbitrary and generic

The notion of arbitrary set is normally associated to the work of Dedekind,
Cantor, and Zermelo and is intended to describe sets that are not charac-
terized by a law, or a property, but whose existence can only be inferred
indirectly, by results like Cantor’s Theorem (CaT) on the uncountability
of R.

Conceptually, an arbitrary set is opposed to a set that is definable. But
of course the notion of definability needs to be made relative to a context
or a language, to avoid paradoxes like Richard’s. This is not a problem for

2[22], p. 94.
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the existence of arbitrary sets, since the language of ZFC is countable and
consequently there are at most countable many definable real numbers3.

Arbitrary sets are often associated to the so-called quasi-combinatorial
conception of sets [2]—or combinatorial maximality [18]. The best way to
explain this notion is using Bernays’ words.

[Platonism in analysis] abstracts from the possibility of giv-
ing definitions of sets, sequences, and functions. These no-
tions are used in a “quasi-combinatorial” sense, by which I
mean: in the sense of an analogy of the infinite to the finite.

Consider, for example, the different functions which as-
sign to each member of the finite series 1, 2, . . . , n a number
of the same series. There are nn functions of this sort, and
each of them is obtained by n independent determinations.
Passing to the infinite case, we imagine functions engen-
dered by an infinity of independent determinations which
assign to each integer an integer, and we reason about the
totality of these functions.

In the same way, one views a set of integers as the result of
infinitely many independent acts deciding for each number
whether it should be included or excluded. We add to this
the idea of the totality of these sets. Sequences of real num-
bers and sets of real numbers are envisaged in an analogous
manner. From this point of view, constructive definitions of
specific functions, sequences, and sets are only ways to pick
out an object which exists independently of, and prior to,
the construction.

The axiom of choice is an immediate application of the
quasi-combinatorial conception in question4.

It is convenient to make explicit the basis of Bernays’ argument, outlining
three conceptual principles that we find here at play and that we can trace
back to Cantor’s view on sets.

3A different notion of definability is that with parameters, but since the class of all
cardinals is provably larger that any given cardinal, and since a set of parameters is
always fixed with its cardinality, there will always be sets that are not definable, even
with parameters.

4In [2]. Quoted from the English translation, pp. 259–260.
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(1) It is the possible to make infinitely many determinations at once5,
exactly as is the case of the Axiom of Choice (AC) and the Well-
Ordering Theorem. The latter was shown to be equivalent to AC
by Zermelo in 1904 [33], and was considered a law of thought by
Cantor [3].

(2) We can see in Bernays’ words an instance of what has been called
Cantor’s finitism by Hallett, in [12], that can be easily explained as
the belief of a general uniformity between the finite and the trans-
finite. Specifically, this principle grants an analogy between the
laws of arithmetics for natural numbers and the laws of transfinite
arithmetics, the latter being an extension of the former, beyond ω.

(3) Finally, not only arbitrary objects are engendered by infinitely-
many determinations, in analogy to the finite case, but “the totality
of these sets” is also taken to exist. This is nothing else than the so-
called domain principle [12], that is both a declaration of realism in
mathematics and the ultimate reason that Cantor offers in defense
of actual infinity. Simply put, the principle says that if a variable
runs over a given domain, then that domain should exists in its
entirety.

It is interesting to notice that the arbitrariness of an object is not given
by the absence of a definition, but by the impossibility to offer one. This has
the somewhat disturbing consequence of making impossible to characterize
an arbitrary set. Even by showing the existence of arbitrary sets, CaT does
not offer an example of such a set. Indeed, the classical diagonal argument
shows the existence of a real number that does not belong to a countable list
of real numbers, but that, being defined in term of a suitable modification
of the diagonal, cannot be considered arbitrary.

A second important aspect of arbitrary sets worth noticing is their min-
imal contribution to the logical structure of the theory that proves their
existence. Given that an arbitrary set is not determined by a definition or
a law, there is no property that determines if and when an object belongs
to it. This is why the only possible description of an arbitrary set A is
given by sentences of the form “x ∈ A” or “x /∈ A”. In other words the
only logical contribution that A can offer is given by the membership of
its elements.

On the other hand the notion of generic set is formal and it is given by
the theory of forcing.

5The temporal metaphor is often used in these contexts, but should not be taken too
seriously, since it is only an dynamic picture that helps to humanize a context that is,
however, completely static in its realism.

4



Definition 1.1. Given a countable model M of ZFC 6 and a partial order
(poset) P belonging to M , we say that a filter G ⊆ P is (M,P)-generic if,
whenever D ∈M is a dense subset of P, then G ∩D 6= ∅.

Intuitively a set is generic, with respect to a model M and a poset P, if
it meets all requirements to be a subset of P from the perspective of M and
nothing more. The elements of P, called conditions, represent partial pieces
of information that will eventually give the full description of the generic
G. Moreover, the dense sets that belong to M represent the properties that
a subset of P should eventually have, as considered from the perspective of
M . For this reason, a generic set does not have a characteristic property
that distinguishes it from all other elements of M . Consequently, when it
happens not to belong to M—and this is the case when P is non-atomic—it
is just because sentences like“x ∈ G” or “x /∈ G” distinguishes it from all
other elements of M .

Cohen showed that generic filters exist and we will call this result Co-
hen’s Theorem (CoT). The proof of CoT is non-constructive. As a matter
of fact, it shows the existence of a set that has non-empty intersection with
each element of the cartesian product of the countably-many dense sub-
sets of P, that belong to M ; these are the infinitely many determinations
that engender G, without giving it any further property besides being
generic. It is therefore no surprise that CoT is equivalent to the Baire
Category Theorem for complete metric spaces, that in turn is equivalent
to the Principle of Dependent Choice (DC)7. In other terms CoT shows
the existence of generic filters using the same principles that motivate a
quasi-combinatorial approach to set theory and the existence of arbitrary
sets.

Therefore the strong character of arbitrarity that generic sets seems to
have can be easily explained by their non-constructive nature. In other
words generic sets show elements of arbitrarity exactly because their exis-
tence is based on the same principles that ground the existence of arbitrary
sets.

6Notice that the fact of considering countable models, and not countable transitive
model, is not a limitation here. Indeed, forcing constructions also work with countable
models that are not transitive.

7See [30] and [11] for the proof of these facts and for other interesting equivalences.
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It is this connection that we would like to discuss in the following pages8,
considering more closely the analogy between CaT and CoT.

1.1. Cantor and Cohen. Genericity and arbitrariness have not only in
common their non-constructive character, but also a deep connections with
a realist stand towards existence in set theory and, given the foundational
character of the latter, also in mathematics.

A neat example of a realist aspect connected to quasi-combinatorialism
is the standard interpretation of Cantor’s diagonal argument for the un-
countability of R. Indeed, CoT is normally taken as an argument in favor
of the existence of uncountable cardinalities and consequently of arbitrary
sets. We briefly recall Cantor’s argument in order to outline a parallel with
forcing constructions.

Cantor’s argument : Suppose there is a surjection f : ω → P(ω).
Then consider the set A = {n ∈ ω : n /∈ f(n)}. By surjectivity of f there
is an a such that A = f(a). But then a ∈ A ⇐⇒ a /∈ f(a) ⇐⇒ a /∈ A.
Hence f does not exist.

Cohen’s argument for showing how to extend a model with a generic
filter has a very similar structure: if we assume that we cannot extend
our domain (in this case a countable model M of ZFC, while before an
enumeration of R in length ω), then we arrive to a contradiction by means
of a diagonal argument that allows to find a new object outside the domain.

Cohen’s argument : Let M be a countable transitive model of ZFC
and let P ∈M be a non-atomic poset. Suppose there is an filter G ⊆ P, in
M , that intersects every dense subsets of P in M . Then consider the set
E = {p ∈ P : p /∈ G}. By density of E, there is an e ∈ E ∩ G. But then
e ∈ G, but as e ∈ E it follows that e /∈ G. Hence G does not exist in M .

Interestingly enough, this comparison has been already proposed in [20],
in connection with an argument against the existence of uncountable car-
dinals. This argument belongs to a skeptical tradition, inaugurated by
Skolem, that, although minority among set-theorists, represents a sort of
Cartesian doubt on set-theoretical reality that has never been proved to

8In the literature it we find a similar suggestion in [7]: “Within mathematical logic,
our theory of arbitrary objects leads to a modest formal development of its own. But
it is also able to throw light on more traditional methods and results. It sometimes
appears as if a mathematician is making significant use of an arbitrary or ‘generic’
object. Obvious examples are the use of generic sets in the independence proofs and
the use of arbitrarily small quantities in analysis.” p. 74. Unfortunately Fine seems
not to have developed this interesting suggestion. We deserve for another occasion a
discussion on the relationship between Bernays’ notion of arbitrariness and Fine’s.
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be logically false. In what follows we won’t provide such undoubtable
argument but our strategy will be to push this doubt to its extreme con-
sequences; to the point that an absurdity will be reached, even from a
perspective like Skolem’s. To this aim we briefly review [20].

In his paper Meadows notices that, among the many things that we can
do with forcing, Cohen’s method allows to extend a countable model M
with filters that code bijections between uncountable cardinals (of M) and
ω. Then he argues that, because of the existence of such filters, we might
consider the existence of uncountable collections only an illusion.

Observing this situation and given our claim there are not
any really uncountable infinities, we might imagine ourselves
as, so to speak, navigating an endless collection of these
countable models in something like the generic multiverse
we have described. While the illusion of multiple infinite
cardinalities is witnessed inside each of the universes, we
are free to move between them. [. . . ] I would like to make
the provocative suggestion that forcing is a kind of natural
revenge or dual to Cantor’s theorem: where Cantor gives us
the transfinite, forcing tears it down9.

We agree with Meadows that it is debatable whether CaT, alone, is able
to ground an argument in favor of the existence of uncountable cardinals,
without resting on further assumptions. However, we believe that the
inverse analogy between CaT and CoT, suggested in [20], is misleading
and rests on the confusion between the theoretical and the meta-theoretical
levels. While CaT can support an argument in favor of the existence of
uncountable cardinals within set the theory, on the contrary CoT deals
with models of set theory; and if any conclusion can be drawn from it,
that would be about the cardinality of these models. Therefore, we believe
that in direct opposition with the above quotation we may argue that CoT
can be seen as a positive argument for the uncountability of the universe
of set theory, or, to put in a negative way, as a hint that countable models
are only partial approximations of the universe of all sets.

It is important to stress that we are not arguing that CaT and CoT are
able to prove the existence of uncountable sets (respectively, models), but
only that if we accept that CaT gives us the transfinite within set theory,
then CoT does not tear it down, but on the contrary it gives us the trans-
finite from a model-theoretic perspective. On this view CoT would thus
harmonize theory and meta-theory: if we accept that there are uncountable
sets, then we have models that can accommodate them.

9[20], p. 206-207.
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Discussing CaT Meadows suggests that the non-existence of a bijection
between N and R could be ascribed to the range of quantification where
this bijection is supposed to live: “The key and contentious idea is that
there is no powerset of the naturals to quantify over. There is no theory
than can quantify over all the subsets of the natural numbers.”, [20], p.
196. Therefore the set-theoretical Cartesian doubt is here shaped in the
form of keeping open the possibility that the universe of all sets is just
countable. This perspective—perfectly opposite to what we consider to be
the meta-theoretical consequence of CoT—can also be found in the words
of Dana Scott, from the preface of Bell’s book on Boolean-valued models
[1], with the same misleading mixture of theoretical and meta-theoretical
levels.

Perhaps we would be pushed in the end to say that all sets
are countable (and that the continuum is not even a set)
when at last all cardinals are absolutely destroyed10.

To oppose the inverse analogy between CaT and CoT suggested above
and to argue in favor of their close connection with a realist perspective,
we can also notice that it is possible to prove CaT directly from CoT. We
can reason as follows11.

Let C be Cohen forcing in the form of ω<ω: i.e., the set of finite sequences
of natural numbers, with the order given by reverse inclusion: i.e., for
p, q ∈ C, we say that p ≤ q whenever q ⊆ p. Now consider a countable
collection of real numbers, that can be seen as a countable X ⊆ ω<ω, say
X = {xn : n ∈ ω}. Moreover consider a model M of ZFC that contains C
and X—this is possible by standard model-theoretic arguments. Now, for
n ∈ ω, consider

Dn = {p ∈ C : p 6= xn � dom(p)}
and

D∗n = {p ∈ C : n ∈ dom(p)}

that not only belong to M , by absoluteness of the definition and since
C ∈ M , but are also dense in C. Now, CoT provides a filter G that
intersects, among all dense subsets of C that belong to M , also every Dn

and D∗n, for n ∈ ω. Therefore,
⋃
G is an element of ωω, that, by a density

argument, is different from any single xn. In other terms
⋃
G ∈ ωω \ X

and by the arbitrary choice of X, we can infer that |R| = 2ℵ0 > ℵ0 = |N|.
Therefore forcing allows to prove CaT, by showing the existence of a new

generic real that does not belong to any countable enumeration. Notice

10[1], p. xv
11The argument of the next paragraph is taken from [23].
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that, for the sake of our presentation, this proof is stronger than the clas-
sical one, since the new real is now generic, contrary to the easy definition
that a real receive in a diagonal construction.

Indeed, diagonal arguments show that however large is the class of ob-
jects we consider, that will never be all there is. This idea can be de-
scribed in two complementary ways: positively, saying that our domain of
discourse is always extendible with new objects, while negatively, saying
that our language is too weak to describe all there is.

On the other hand, arguments based on the existence of arbitrary sets
have stronger philosophical consequences, being grounded on a realist per-
spective on mathematical existence. These arguments say not only that
the existence of objects is prior to our determinations, but also that there
are things that cannot be linguistically determined.

1.2. Skolem and Cohen. So far we argued in favor of the similarities
between CaT and CoT and we disentangled the mixture of theoretical and
meta-theoretical considerations that one can draw from these results. But
coming back to the original Skolem’s concern, does CoT tells us something
more than CaT to counter this Cartesian doubt?

As already suggested neither CaT nor CoT can, alone, assure the ex-
istence of uncountable sets. Exactly because, as Jané put it: “[T]hat no
countable list of number collections is complete does not imply that the
complete list of all number collections is uncountable, since there may be
not such list”, [15], p. 145.

However, we think that CoT, and the meta-theoretical realism that this
result suggests, offers a more compelling argument against Skolem’s rel-
ativism about set theoretic notions. To this aim we summarize Skolem
Paradox: that feeling of unease that comes from the apparent clash be-
tween CaT and Löwenheim-Skolem Theorem (LST). Indeed, LST allows
to shows that there are countable models of ZFC, that thus verify CaT.
Therefore there are models that think that some of their sets are uncount-
able, while them being countable.

The standard answer consists in keeping separate the internal perspec-
tive of the model, and the external one: i.e., the theoretical and the meta-
theoretical levels. Following this strategy the apparent contradiction is
broken down by noting that not all bijections between ω and a given set
belong to a countable model. Henceforth, the “solution” to the paradox is
found in the impossibility for a countable model to capture the uncount-
ably many bijections between ω and a given set. Although technically
irreproachable this answer has the weakness of relying on the uncountabil-
ity of 2ℵ0 . Exactly the point of Skolem’s disagreement.
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Skolem never though about Skolem Paradox as a paradox. Indeed there
is nothing paradoxical in it for a person distrustful of the existence of
uncountable collections. On the contrary, he thought that LST was a clear
sign of an inevitable relativity of set theoretical notions.

The scope, the target and the structure of Skolem’s argument has been
intensively discussed. Since the vast literature on this subject does not
always cohere and because our aim here is not exegetic, we will try not to
side with any particular interpretation, keeping our discussion on the less
controversial aspects of Skolem’s criticism towards set theory.

In discussing the relativity of set-theoretical notions we have to be clear
that Skolem is not considering the obvious form of relativism that originates
from the simple observation that different models represent set theoretical
notions in different ways. On the contrary Skolem’s form of relativism
rests on two remarks: the first is that the axiomatic method is the best we
have to deal with set theory, since we do not have a consistent notion of
set from näıve set theory; the second is that the only models we can build,
without assuming the existence of uncountable collections from the outset,
are the countable ones. In [15] Jané has precisely and concisely described
Skolem’s relativism in the following way.

Recall that Skolem does not argue against the absolute
meaning of certain set-theoretical notions because such no-
tions take different forms in different models, but rather
because he has been given no reason to believe that there is
even one model in which these notions take their presumed
right form; in all the models that he is able to build, sets
deemed to be uncountable are indeed countable12.

In other terms, Skolem believed that the notion of uncountable collec-
tion is relative simply because the only models of axiomatic set theory we
can build are countable. Skolem is thus expressing two clear points: the
axiomatic method is trustful and we have no axiomatic reason to believe
in the existence of uncountable collections.

Now, what can CoT say in this respect? As we showed in §1.1 both CaT
and CoT allow to show the incompleteness of a countable set by means of a
diagonal argument. However there is an important difference with respect
to the nature of the set that is shown to be incomplete: in the case of CaT
a given set of reals, while in the case of CoT a model of set theory.

While it is true that the fact that all countable lists are incomplete does
not imply that the complete list is uncountable, nonetheless it does show,
at least, that the list is not all there is. This simple observation gains
value when applied to a collection that is supposed to be complete in some

12[15], p. 148.
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respect, like a model of set theory. Although the existence of sets outside
a countable model does not directly imply that the universe of all sets is
uncountable, however it tells us that the countable model we consider has
to be understood as a toy model: a model that does not faithfully represent
the correct interpretation of the axioms of set theory.

Moreover, we may find a significant structural difference between CaT
and CoT. While CaT proceeds by contradiction and concludes that a count-
able list of all real numbers does not exist, CoT does not aim at contra-
dicting the existence of a countable model of ZFC.

So we found ourselves in an awkward dilemma. We assumed that set
theory is consistent, but all models we can build cannot be considered
adequate semantic realizations of its axioms. So either there are adequate
models that are not countable, or there are no adequate models of set
theory at all. Remember that Skolem’s skepticism held a quite different
alternative: either we assume that there are uncountable collections from
the outset—what Skolem strongly doubted—or we have to consider set-
theoretic notions relative to a model of axiomatic set theory.

The two options offered by CoT are definitely more extreme than the
ones offered by Skolem. Indeed, if we exclude the possibility that there are
uncountable collections, then we have to conclude that set theory has no
models adequate to its axioms. Notice that, in Skolem’s view, the latter is
not a consequence of the non existence of uncountable sets, exactly because
of the relativity of set-theoretical notions. Indeed, for Skolem there was no
absolute notion with respect to which a countable model was unfaithful.
However, CoT forces us to declare a countable model inadequate to model
the axioms of set theory, even in the absence of an absolute notion of
uncountability. Let me stress the importance of this point. While the
standard solution of Skolem Paradox declares countable models unfaithful
only in the case of the existence of uncountable sets, CoT forces us to
consider every countable models inadequate to model the axioms of set
theory, even in the absence of an absolute notion of uncountability.

As a proud opponent of uncountable totalities, Skolem would probably
opt for the second horn of the dilemma offered by CoT, but this would
be highly problematic, because it would show intrinsic limitations of the
axiomatic method.

In other words what we can call Cohen’s Dilemma shows that either
we accept the existence of uncountable collections, or that first order logic
is not powerful enough to deal with set theory, and therefore—from a
perspective far from Skolem’s—with mathematics.

As we hinted before Skolem’s criticism of the foundational role of set
theory did not correspond to a similar distrust of the axiomatic method in
general, leaving Cohen’s Dilemma problematic even for Skolem.
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The fact that axiomatizing leads to relativism has been
sometimes considered to the weak spot of the axiomatic
method. There is no reasons for this. The analysis of mathe-
matical though, the fixation of fundamental hypotheses and
the ways of reasoning can only be an advantage for science.
It is not a weakness of an axiomatic method that it cannot
yield what is impossible.13

Interestingly enough, Cohen himself, in a partisan description of Skolem’s
position, seems to advocate the second horn of Cohen’s dilemma.

So, let me say that I will ascribe to Skolem a view, not ex-
plicitly stated by him, that there is a reality to mathematics,
but axioms cannot describe it. Indeed one goes further and
says that there is no reason to think that any axiom system
can adequately describe it.14

To summarize, we did not attempted to propose a straightforward argu-
ment in favor of the existence of uncountable cardinals based on CaT and
CoT, but we only outlined their parallelism and not their opposite comple-
mentarity. If CaT gives us the uncountable within set theory, CoT gives it
at a meta-theoretical level. Moreover, the alternatives suggested by CoT
are more extreme than those offered by Skolem Paradox: if we cast doubts
upon the existence of the uncountable we do not only conclude that set-
theoretical notions are relative, but also that their models are inadequate
to realize the axioms of set theory.

We also tried to clarify the common conceptual origin of both notions
of genericity and arbitrariness, finding that they both hinge on a form
of realism described by Bernays as quasi-combinatorialism. Moreover we
discussed the connections of these ideas with the main goal of set theory:
to give mathematical dignity to the notion of infinity in mathematics. We
now would like to tackle the problem of how a formal approach could work
in clarifying these basic notions of set theory. In other words we would like
to ask to what extent a connection between genericity and arbitrariness
is able to justify axioms able to formally capture the idea of sets whose
existence is prior to, and independent of, our constructions.

2. On the justification of Forcing Axioms

So far we analyzed sets that are generic with respect to a model of ZFC.
But the connection we found between genericity and arbitrariness did not
originate by the fact of being generic with respect to a model, but instead

13[25], p. 470.
14[4], p. 2417.
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by the fact of being determined in a non-constructive way by intersecting
countable many dense sets.

Then, if we drop the requirement that the dense sets belong to a model,
we get the notion of D-generic, for a family D of dense subsets of a poset P.
It is unclear if this is the notion of genericity that Mostowski had in mind
when he suggested a more general analysis of genericity, but it clearly goes
in the direction of freeing this notion form its dependence on models.

Following this line of reasoning, we can consider D-generic sets as sets
with strong conceptual similarities with arbitrary sets and a forcing con-
struction as a non-constructive way to produce new mathematical objects.
Consequently, we may inquire about the possibility to devise new axiomatic
principles that, as AC gives choice functions, would produce D-generic sets.
But this is exactly what Forcing Axioms do.

2.1. Forcing Axioms. Intuitively, Forcing Axioms tell us that the uni-
verse of all sets has been saturated by means of the possibilities offered by
forcing constructions. As a consequence we could think of a structure sat-
isfying forcing axioms as one obtained after many applications of forcing.
Indeed this is the rough idea behind their relative consistency proof15.

Mathematically, forcing axioms can be presented in several different
ways. We give their standard definition in terms of posets.

Definition 2.1. Let Γ be a collection of partial orders and κ e regular
cardinal, then the Forcing Axiom FA(Γ, κ) states: for any partial order P
in Γ and for any collection D of dense subsets of P, with |D| ≤ κ, there
is a filter G ⊆ P that intersects every D ∈ D (i.e. a D-generic filter).

Notice that CoT shows that it is always possible to find a generic filter
that intersects a countable family of dense sets. Therefore, it is a theorem
of ZFC that FA(Ω,ℵ0) holds, with Ω being the (proper) class of all possible
posets.

On the other hand it is not hard to find a poset P and a family D, of
size ℵ1, for which there is no D-generic filter G ⊆ P. For example consider
Coll(ω, ω1), i.e., the poset of finite partial functions from ω to ω1, ordered
by reverse inclusion. It is easy to see that, for every α ∈ ω1 and n ∈ ω, the
set Dα = {p : α ∈ ran(p)} and the set D∗n = {p : n ∈ dom(p)} are dense in
Coll(ω, ω1). But now, if there was a filter G ⊆ Coll(ω, ω1) that intersected
all Dα, for α ∈ ω1, and all D∗n, for n ∈ ω, then

⋃
G would be a bijective

function from ω to ω1; which is clearly impossible.

15See [29] for an expanded presentation of Forcing Axioms and their role in founda-
tions of set theory.
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However, many independence proofs depends on forcing constructions
given by intersecting ℵ1-many dense subsets of a suitable poset [21]. Con-
sequently one of the driving questions which led the research in set theory
during the past decades has been to isolate the largest class of posets Γ
for which FA(Γ,ℵ1) can possibly hold. This, indeed, would offer a Forcing
Axiom able to settle a vast number of mathematical problems at once.

Shelah, Magidor and Foreman [8] isolated a property of posets P, called16

stationary set preserving and noted SSP(P), which is provably in ZFC a
necessary condition in order for FA({P},ℵ1) to hold; but they were also
able to show that this can also be a sufficient condition. Indeed, if a
supercompact cardinal exists17, then there is a model of ZFC such that the
following holds.

(MM) For P a poset, FA({P},ℵ1) if and only if SSP(P).

This principle is known in the literature as Martin’s Maximum, and is
the strongest possible Forcing Axiom for the intersection of ℵ1-many dense
sets.

2.2. Forcing Axioms and AC. The connection between genericity and
arbitrariness that we argued at a conceptual level finds a mathematical
counterpart in the possibility to present AC as a collection of Forcing Ax-
ioms.

Definition 2.2. A poset P is < λ-closed if whenever {pi : i ∈ κ} is a
family, of size κ < λ, of decreasing elements of P: i.e., pi ≤ pj whenever
i ≤ j, then there is a p ∈ P, such that p ≤ pi, for i ∈ κ.

Let Γλ denote the class of posets which are < λ-closed and let Ωλ denote
the largest possible class for which FA(Ωλ, λ) holds. Goldblatt in [11], and
more recently Todorčević, noted the following interesting result.

Theorem 2.3. (Goldblatt, Todorčević) AC is equivalent to the assertion
that, for all cardinals λ, FA(Γλ, λ) holds.

Now, as we noted before, CoT is equivalent to DC, that is equivalent
to FA(Γℵ0 ,ℵ0) [11], [30]. Notice that, by transitivity of the order relation,
every poset is < ℵ0-closed. Therefore FA(Γℵ0 ,ℵ0) is nothing else then

16C ⊆ ω1 is a club if it is unbounded in ω1 and contains the supremum of all its
countable subsets; S ⊆ ω1 is stationary if it meets all the club subsets of ω1. SSP(P)
holds if, after forcing with P over a model M of ZFC, every S ⊆ ω1 that was stationary
in M is still stationary in every generic extension of M .

17For reason of space we cannot give a definition of supercompact cardinals, but refer
the interested reader to the standard reference on large cardinals [17].
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FA(Ωℵ0 ,ℵ0) and Ωℵ0 is the class of all posets. Consequently FA(Ωℵ0 ,ℵ0)
expresses the same content of CoT.

Moreover, it is easy to show that if a poset P is < ℵ1-closed, then
SSP(P) holds [16]. Therefore, MM is just the best possible strengthening
of FA(Γℵ1 ,ℵ1) and MM is just FA(Ωℵ1 ,ℵ1). In other terms, the strongest
Forcing Axiom for ℵ1 maximizes the class of objects whose existence can
be proved with the non-constructive tools that AC offers at the level of ℵ1.

2.3. Justification of Forcing Axioms. We got to the point where we
can offer a thorough justification of Forcing Axioms in terms of the quasi-
combinatorialism expressed by Bernays. His argument was based on three
principles, then we now analyze singularly, showing that they offer a suf-
ficient ground for the acceptance of Forcing Axioms as natural extensions
of ZFC [28].

First of all, Bernays argued that it is possible to offer infinite determi-
nations that engender new objects in a non-constructive way, since these
objects exist independently of, and prior to, our constructions. This is a
declaration of realism that justifies the existence of arbitrary sets. As we
argued in these pages, generic sets bear a deep conceptual similarity to
arbitrary sets, based on their mutual non-constructive character. More-
over, the close connection between Forcing Axioms and AC shows that if
we accept the kind of objects that choice principles provide, we should also
accept the objects that forcing constructions produce. Therefore, Forcing
Axioms and AC should be considered on a par, for what concern the type
of mathematical objects they show to exist.

The second principle that backed Bernays’ quasi-combinatorial perspec-
tive was something akin to Cantor’s finitism. Now, the analogy between
the finite and the transfinite, and the uniformity of the laws that govern
transfinite numbers, is what allows to extend principles that are valid down
below the hierarchy of sets to higher levels. Therefore the same arguments
used to extend the laws of arithmetic, from the finite to the transfinite
case, can be used to justify the extension of a principle valid in ZFC, like
FA(Ωℵ0 ,ℵ0), to the next cardinal: that is FA(Ωℵ1 ,ℵ1). Indeed, on the same
ground on which we accept an axiom like DC, that shows a maximality
principle with respect to existence of arbitrary objects given by ℵ0-many
determinations, we should accept MM as a maximality principle with re-
spect to existence of arbitrary objects given by ℵ1-many determinations.

The third pillar on which Bernays’ argument rested was the domain
principle. This principle allows to consider the totality of sets of a given
kind, both arbitrary and non-arbitrary, as a new complete set. This is the
ground on which axioms like the Powerset Axiom are justified. Indeed, we
see a subset of a set as ranging over the collection of all possible subsets,
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therefore, by the domain principle, we should accept the existence of this
domain of variability. However, this principle does not help much in cap-
turing, mathematically, the notion of powerset. As Ferreirós put it: “[T]he
axiom of Powersets postulates a somehow maximal set of subsets of any
given S, with the maximality remaining fuzzy—or perhaps better, with it
remaining an ideal horizon that might even be impossible to make fully
concrete in mathematical terms”, [6], p. 384.

With respect to this third point, the justification of Forcing Axioms takes
into considerations their effects more then their nature. Indeed, Forcing
Axioms allow to go beyond ZFC in making mathematically more precise
the notion of arbitrary set. In the specific case of the Powerset Axiom,
an axiom like MM is able to make more concrete this fuzzy horizon of
all subsets of N. As a matter of fact MM decides the cardinality of the
continuum in the following sense.

Theorem 2.4. (Foreman, Magidor and Shelah, [8]) If MM holds then
2ℵ0 = 2ℵ1 = ℵ2.

Therefore Forcing Axioms allow to make concrete the imprecise notion
of P(N), thus not only accepting the domain principle, but permitting
a better determination of its application to arbitrary subsets of natural
numbers.

In conclusion we can say that Forcing Axioms are well-justified from a
quasi-combinatorial perspective on mathematical existence and that they
consist of maximality principles aimed at making the universe of sets as
rich of arbitrary sets as possible. Moreover, Forcing Axioms are able to
determine mathematically this richness, giving a determinate size to the
powerset of all natural numbers. In this sense MM and similar principles
should be seen as natural axioms for set theory; axioms that grant the
possibility of going beyond the limits of ZFC, giving more precise determi-
nations of the necessarily imprecise notion of arbitrary set.
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